

Instruction Manual

ICENI/AI-04
4 Channel RTD Input Module

Pub_3645 - Issue 1

© Regulateurs Europa Ltd 2014

The contents of this document are the exclusive Property of Regulateurs Europa Ltd

They must not be copied or reproduced without the written authorisation of the Company

Pub_3645 Page 2 of 25

INDEX

1	FOR	EWORD		5
2	GEN	ERAL US	SE	6
	2.1	Genera	al	6
	2.2		ct Condition	
	2.3	Signal	Connection	6
	2.4		e Damage / Repair	
3	PRO	DUCT OV	/ERVIEW	7
	3.1		lode	
	3.2		ous Interface	
	3.3		Viring Interface	
4	ICEN	II/AI-04 K	EY FEATURES	10
5	PRO	DUCT SP	PECIFICATION	11
	5.1	Electri	cal Properties	11
		5.1.1	Power Supply Input	
		5.1.2	Signal Channels	
		5.1.3 5.1.4	Fault Status Indication	
		5.1. 4 5.1.5	Signal IsolationField Wiring Termination	
	5.2		nical Properties	
	0.2	5.2.1	Temperature Range	
		5.2.2	Material	
		5.2.3	Weight	
		5.2.4	Ingress Protection	
		5.2.5	Dimensions	13
6	UNP	ACKING	& INITIAL PREPARATION FOR USE	14
	6.1	Unpacl	king	14
	6.2	Node A	Assembly	14
	6.3	Node D	Disassembly	14
	6.4	Module	e Positioning Within a Node	15
7	FIEL	D WIRING	G TERMINATION	16
	7.1	Termin	nal & Connector Layout	16
	7.2	Wiring	Schematic	16
	7.3	Earthir	ng / Grounding	

8	MOD	ULE USER INTERFACE	18
	8.1	Indicators	18
	8.2	Pushbutton	18
9	MOD	ULE OPERATION	19
	9.1	Module Configuration	19
	9.2	Signal Configuration	19
	9.3	Signal Measurements	19
	9.4	Module & Signal Failure Detection	20
10	DATA	A COMMUNICATIONS TO MASTER MODULE	22
11	SOF	TWARE VERSION	23
12	CON	TACT	24
13	REVI	ISION HISTORY	25

1 FOREWORD

These instructions have been compiled to assist personnel responsible for the operation and maintenance of equipment manufactured by Regulateurs Europa Ltd.

Care has been taken to ensure that the equipment has been accurately represented, but it should be appreciated that, with the continued progress of design and the diversity of application, certain items may differ in detail.

It should be noted that these instructions are issued for general information and do not constitute a specification of the equipment.

Whilst reserving the right to make any alteration in design which they may consider advisable the manufacturers absolve themselves from making any such alteration retrospective.

In addition to the information given herein, practical advice and assistance is always available from the Customer Support Department at Regulateurs Europa Ltd.

Pub_3645 Page 5 of 25

2 GENERAL USE

Before carrying out any repairs, adjustments or maintenance to any equipment supplied by Regulateurs Europa Ltd, it is essential the following safety precautions be observed.

2.1 General

The operator should take care to make themselves thoroughly familiar with the operating principles, methods of adjustment and the dismantling and assembly procedures (where applicable) concerning the equipment in use.

2.2 Product Condition

Before power-up ensure that the product is in a good condition and not damaged, paying particular attention to the ICENIbus connectors on each side of the module and the field wiring connectors at the top of the module. Ensure that any wires are fitted securely into terminals.

2.3 Signal Connection

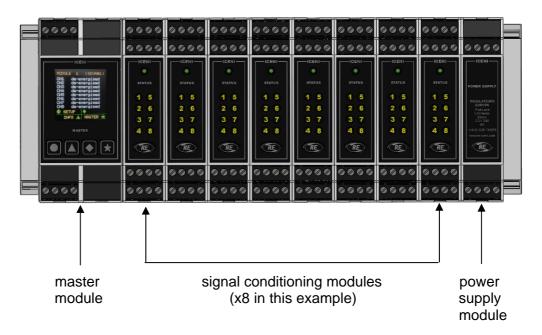
If the module requires configuration then ensure that any critical signals are disconnected from the module until configuration of the module has been performed. This will prevent unwanted or unexpected changes in signal polarity from affecting other circuitry.

2.4 Module Damage / Repair

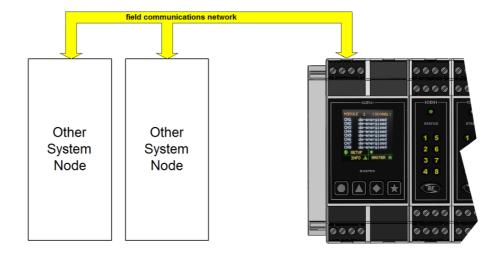
The Iceni modules are not repairable. Where damage is found that could compromise the operation of the module, a replacement part should be sourced from Regulateurs Europa Ltd.

Iceni module should be disposed via an approved disposal scheme suited to electronic products and in accordance with local legislation.

Pub 3645 Page 6 of 25



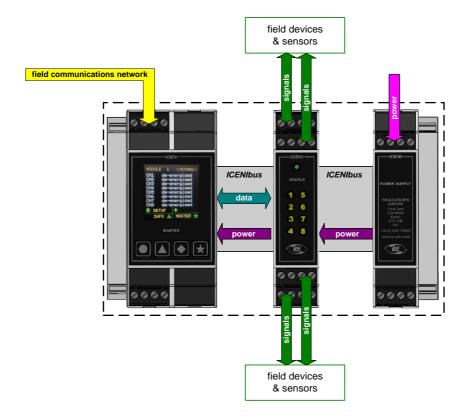
3 PRODUCT OVERVIEW


3.1 Iceni Node

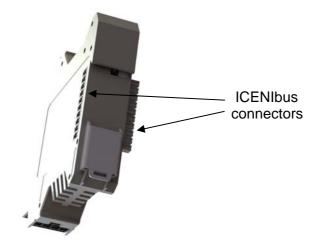
An Iceni node comprises of a master module, between one and sixteen signal conditioning modules and at least one power supply module.

A typical Iceni node:

According to the mix of signal conditioning modules, the Iceni node manages the measurement and generation of electrical signals to/from sensors and field devices. Information is exchanged with other nodes in a system via a field communications network connected to the Iceni master module.



Pub_3645 Page 7 of 25



3.2 ICENIbus Interface

Iceni modules are designed to plug together to form a node. The connection system used to join one module to another is called ICENIbus and is used to transfer both data and power supply between modules.

All modules have a 10-way ICENIbus connector on both sides of the lower housing, although for end modules (master and main power supply) one side connector will be supplied fitted with a protective cover.

Pub_3645 Page 8 of 25

3.3 Field Wiring Interface

As standard, Iceni modules are supplied with screw-clamp field wiring connectors, although cage-clamp variants are available as an option.

For ICENI/AI-04 there are four connectors marked 1-4, 5-8, 9-12 and 13-16 to match the numbers marked on the Iceni housing. This arrangement identifies the connector to its location on the module.

When fitted properly, the field wiring connectors are held securely in the module housing. In order to remove a terminal, a small flat bladed screwdriver should be inserted between the top of the connector and the module housing to enable the connector to be carefully levered free. This will release the connector without damage.

Pub_3645 Page 9 of 25

4 ICENI/AI-04 KEY FEATURES

The ICENI/AI-04 module is a component of an Iceni node and provides four isolated input channels for monitoring field temperature sensors (fluids, bearings, motor windings, etc.)

The ICENI/AI-04 module provides the following key features:

- o Four sensor inputs, each configurable to support PT100, PT200, PT500 and PT1000 type sensors (alpha = 0.00385).
- Signal fault indication via illuminated channel indicator on ICENI/AI-04 module and on master module display.
- o Measured real world value (i.e. measured temperature) available to field communications network and master module display.
- Signal health status available to field communications network and master module display.

Pub_3645 Page 10 of 25

5 PRODUCT SPECIFICATION

5.1 Electrical Properties

5.1.1 Power Supply Input

Maximum ICENIbus consumption: 200mA

5.1.2 Signal Channels

Number of channels: 4

Input type: RTD

Sensors supported: PT100, PT200, PT500, PT1000

(European curve / alpha = 0.00385)

Sensor characteristic supported: 3-wire

2-wire (for low loop resistance and / or

high resistance sensor types)

Accuracy: +/- 0.5% fsd

Update rates: 10Hz (at master module)

20Hz (internal)

Signal filtering: software and hardware

Input resistance: > 1MOhm

Signal measurement range: -200°C to 850°C (-328°F to 1562°F)

5.1.3 Fault Status Indication

Faults sensed: sensor open circuit

sensor short circuit

sensor resistance too low sensor resistance too high

5.1.4 Signal Isolation

Signal channel to signal channel: none

Signal channel to external power supply: 1kV

Signal channel to other modules: 1kV

Pub_3645 Page 11 of 25

5.1.5 Field Wiring Termination

4 x 4-way free part sockets with screw terminals. (Cage-clamp option available)

Wiring cross section / strip length 0.14 to 0.5mm² / 7mm

Pub_3645 Page 12 of 25

5.2 Mechanical Properties

5.2.1 <u>Temperature Range</u>

Operating: $-20^{\circ}\text{C to } +70^{\circ}\text{C} \quad (-4^{\circ}\text{F to } +158^{\circ}\text{F})$

Storage: $-40^{\circ}\text{C to } +85^{\circ}\text{C} \quad (-40^{\circ}\text{F to } +185^{\circ}\text{F})$

5.2.2 Material

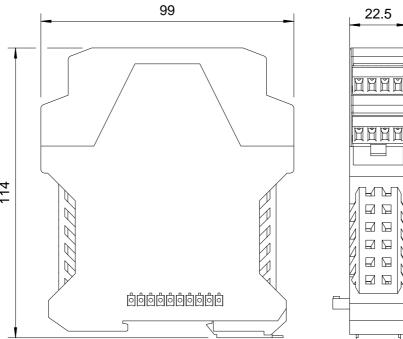
Enclosure: Polyamide

Labels: Polyester

Membrane overlay: Polyester

5.2.3 Weight

Module weight


(including free part screw terminals): 130g (approx.)

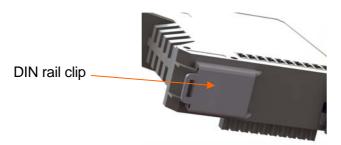
5.2.4 Ingress Protection

Assembled node: IP20

5.2.5 <u>Dimensions</u>

(Dimensions shown in mm)

Pub_3645 Page 13 of 25


6 UNPACKING & INITIAL PREPARATION FOR USE

6.1 Unpacking

The module should be removed from the sealed bag inside the protective cardboard carton. All packaging should be disposed of in an appropriate way.

6.2 Node Assembly

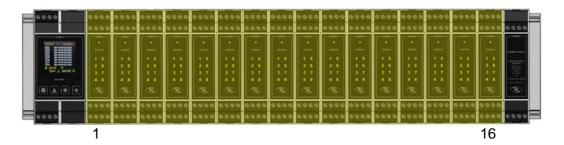
The module is designed to clip and fit onto TS 35 DIN terminal rail (both standard and deep types) with other Iceni modules to form a node. A metal clip is provided on the base of each module for this purpose.

An Iceni node can be mounted in both vertical and horizontal orientations according to terminal rail layout. Assembly of the Iceni node can be achieved in one of two ways:

- The Iceni node (including the ICENI/AI-04 module) can be assembled on a bench and then fitted into place on the DIN rail with a slight tilting action. It is important that the metal DIN rail latch on the underside of each module engages properly with the rail to retain the modules in place.
- The ICENI/AI-04 module can be fitted with other modules one at a time on the DIN rail with a slight tilting action. It is important that the metal DIN rail latch on the underside of each module engages properly with the rail to retain the module in place. The modules can then be pressed together tightly to ensure that each module plugs into its neighbour to form the node.

6.3 Node Disassembly

Disassembly of the Iceni node is essentially the reverse of the procedure above and can be achieved in one of two ways:


- Each module can be separated from the next on the rail. The metal DIN rail latch can then be operated with a small screwdriver and the modules removed with a tilting action, one by one.
- The metal DIN rail latches for all modules can be released in turn with a small screwdriver until the Iceni node is free to be removed with a tilting action. The modules can then be separated from each other.

Pub 3645 Page 14 of 25

6.4 Module Positioning Within a Node

The ICENI/AI-04 module/s should be fitted in any of the yellow locations shown in the diagram below according to the total number of signal conditioning modules assembled in the node.

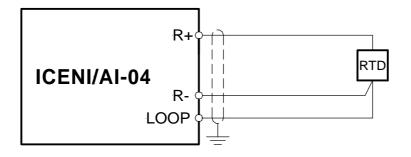
Modules should be assembled with population starting at position 1 on the left hand side, continuing towards position 16 on the right.

Pub_3645 Page 15 of 25

7 FIELD WIRING TERMINATION

7.1 Terminal & Connector Layout

CHANNEL	TERMINAL	DESCRIPTION
	1	R+
4	2	R-
'	3	LOOP
	4	-


CHANNEL	TERMINAL	DESCRIPTION
	5	R+
2	6	R-
2	7	LOOP
	8	-

CHANNEL	TERMINAL	DESCRIPTION
	9	-
2	10	LOOP
3	11	R-
	12	R+

CHANNEL	TERMINAL	DESCRIPTION	
	13	-	
4	14	LOOP	
4	15	R-	
	16	R+	

(- : not connected)

7.2 Wiring Schematic

Notes:

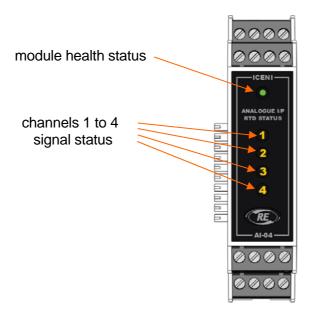
- o For 3-wire operation, wiring for R+, R- and LOOP must be the same length and cross sectional area (CSA).
- For 2-wire operation, R- and LOOP should be linked at the ICENI/AI-04 module terminals. Wiring for R+ and R- must be the same length and cross sectional area (CSA).

Pub_3645 Page 16 of 25

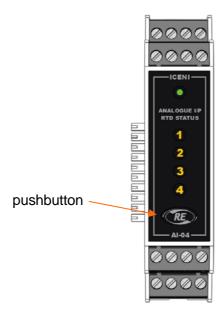
7.3 Earthing / Grounding

The metal terminal rail to which the Iceni node is attached should be connected to a 'clean' earth / ground point. In many applications this would be the chassis of the product.

It is recommended that screened signal cables are used, with the screen connected to a 'clean' earth / ground point at the Iceni node end only. This might be via the terminal rail, for example.


Pub_3645 Page 17 of 25

8 MODULE USER INTERFACE


8.1 Indicators

The top face of the module presents the following status indicators:

8.2 Pushbutton

The top face of the module presents a pushbutton for access to channel information on the master module display:

Pub_3645 Page 18 of 25

9 MODULE OPERATION

9.1 Module Configuration

Following power up the ICENI/AI-04 module will wait for the master module to automatically configure the Iceni node.

During the configuration process, the module health status indicator will flash green.

Following a healthy node configuration, the module health status indicator will light green continuously.

If the ICENI/AI-04 module loses communication with the master module, a self-reset will take place and the module will await re-configuration. During this period, the health status indicator on the ICENI/AI-04 module will flash green.

Following a 'cold' power up each channel will take up to approximately 15 seconds to initialise and present a measurement value. However, the value may not be accurate until the module has reached a stable operating temperature. It is recommended that the module is left to 'warm up' for at least thirty minutes before the values are considered accurate.

Following a 'warm' power up (where the power has been removed for greater than two minutes) each channel will take up to approximately 15 seconds to initialise and present a measurement value. However, the value may not be accurate until the module has reached a stable operating temperature. It is recommended that the module is left to 'warm up' for at least five minutes before the values are considered accurate.

9.2 Signal Configuration

Each signal input can be configured to accept a PT100, PT200, PT500 or PT1000 type RTD sensor. Configuration is initiated by pressing the pushbutton on the ICENI/AI-04 module and then following the configuration procedure provided by the master module display.

9.3 Signal Measurements

The resistance across the sensor, and across the cable loop is measured at each input channel and combined in a calculation to establish the temperature sensed by each RTD sensor.

This real world measured temperature value (in °C or °F) is made available to the field communications network and shown on the master module display.

Scaling for input signals is such that a value of 500 represents a real world measured temperature of 500°C or 500°F, according to the temperature units selected.

Pub 3645 Page 19 of 25

9.4 Module & Signal Failure Detection

The ICENI/AI-04 module and its input signals are monitored at regular intervals by the master module to check their health status.

The following faults are detected locally by the ICENI/AI-04 module:

Fault	Fault	Master	ICENI/AI-04 Master Channel			
Туре	Category	Display	Status LED	Measured Value	Status Value	
sensor resistance (PT100) < 15 Ohms (PT200) > 30 Ohms (PT500) > 75 Ohms (PT1000) > 150 Ohms	minor signal fault	measured signal : 'warning: low R'	flashing	-200°C -200°F	1	
sensor resistance (PT100) > 395 Ohms (PT200) > 790 Ohms (PT500) > 1975 Ohms (PT1000) > 3950 Ohms	minor signal fault	measured signal : 'warning: high R'	flashing	850°C 850°F	2	
sensor short circuit	major signal fault	measured signal : 'fault: s.circuit'	off	-9999°C -9999°F	3	
sensor / cable loop open circuit	major signal fault	measured signal : 'fault: o.circuit'	off	9999°C 9999°F	4	

The faults above are non-latching and will self-reset when the failure condition is removed.

In addition, the following faults are detected by the master module:

Fault	Fault	Master	Master Fault	Field Communications Network	
Туре	Category	Display	Status Output	Measured Value	Status Value
field communications network attempts to access data for a signal channel > 4	network access fault	-	-	9999°C 9999°F	7 (channel unavailable)
ICENI/AI-04 module stops responding to master module	module fault	module status shown as flashing red	de- energises	-	8 (module lost)

The faults above are non-latching and will self-reset when the failure condition is removed.

With the system operating in a healthy state the following will be observed:

Master	ICENI/AI-04 Channel	Field Communications Network		
Display	Status LED	Measured Value	Status Value	
measured value	on	measured	0	

Pub_3645 Page 20 of 25

|--|

Pub_3645 Page 21 of 25

10 DATA COMMUNICATIONS TO MASTER MODULE

The ICENI/AI-04 module communicates its signal information to the master module via a module process image. The master module takes this image and combines it with those from other Iceni signal conditioning modules to form a process image representing the whole Iceni node. It is from this image that data will be exchanged on the field communications network.

The generic Iceni signal conditioning module process image takes the format shown in the diagram on the left below, where sixteen data slots are filled with up to eight measured or driven signal values and up to eight signal status values.

	CHANNEL 1 MEASURED / DRIVEN VALUE (if available)
	CHANNEL 2 MEASURED / DRIVEN VALUE (if available)
	CHANNEL 3 MEASURED / DRIVEN VALUE (if available)
MEASURED / DRIVEN	CHANNEL 4 MEASURED / DRIVEN VALUE (if available)
SIGNAL VALUES	CHANNEL 5 MEASURED / DRIVEN VALUE (if available)
	CHANNEL 6 MEASURED / DRIVEN VALUE (if available)
	CHANNEL 7 MEASURED / DRIVEN VALUE (if available)
	CHANNEL 8 MEASURED / DRIVEN VALUE (if available)
	CHANNEL 1 STATUS VALUE (if available)
	CHANNEL 2 STATUS VALUE (if available)
	CHANNEL 3 STATUS VALUE (if available)
SIGNAL STATUS	CHANNEL 4 STATUS VALUE (if available)
VALUES	CHANNEL 5 STATUS VALUE (if available)
	CHANNEL 6 STATUS VALUE (if available)
	CHANNEL 7 STATUS VALUE (if available)
	CHANNEL 8 STATUS VALUE (if available)

	CHANNEL 1 MEASURED VALUE		
	CHANNEL 2 MEASURED VALUE		
	CHANNEL 3 MEASURED VALUE		
MEASURED / DRIVEN	CHANNEL 4 MEASURED VALUE		
SIGNAL VALUES	CHANNEL UNAVAILABLE		
	CHANNEL 1 STATUS VALUE		
	CHANNEL 2 STATUS VALUE		
	CHANNEL 3 STATUS VALUE		
SIGNAL STATUS	CHANNEL 4 STATUS VALUE		
VALUES	CHANNEL UNAVAILABLE		
	CHANNEL UNAVAILABLE		
	CHANNEL UNAVAILABLE		
	CHANNEL UNAVAILABLE		

Generic Iceni Signal Conditioning Module Process Image

ICENI/AI-04 Module Process Image

The diagram (above right) shows the specific format of the module process image for the ICENI/AI-04 module. As only four signal channels are present, not all data slots are available.

Pub_3645 Page 22 of 25

11 SOFTWARE VERSION

This instruction manual is valid for the following releases of software:

K0013/001

Pub_3645 Page 23 of 25

12 CONTACT

For sales or support enquiries, the following contact details should be used. The product part number and serial number (where available) should be referenced.

Regulateurs Europa Ltd
Port Lane
Colchester
Essex
C01 2NX
United Kingdom

Tel: +44 (0)1206 799556 Fax: +44 (0)1206 792685

Email: support@regulateurseuropa.com

Website: www.re-iceni.com

Pub_3645 Page 24 of 25

13 REVISION HISTORY

REVISION	DATE	AUTHOR	CHANGES
1	22.04.14	MMB	Original

Member of the Heinzmann Group

Regulateurs Europa Ltd
Port Lane
Colchester
Essex
United Kingdom
CO1 2NX

Pub_3645 Page 25 of 25